top of page

Mysite Group

Public·82 members
Jeremiah Rivera
Jeremiah Rivera


Lava is molten or partially molten rock (magma) that has been expelled from the interior of a terrestrial planet (such as Earth) or a moon onto its surface. Lava may be erupted at a volcano or through a fracture in the crust, on land or underwater, usually at temperatures from 800 to 1,200 C (1,470 to 2,190 F). The volcanic rock resulting from subsequent cooling is also often called lava.


Download File:

A lava flow is an outpouring of lava during an effusive eruption. (An explosive eruption, by contrast, produces a mixture of volcanic ash and other fragments called tephra, not lava flows.) The viscosity of most lava is about that of ketchup, roughly 10,000 to 100,000 times that of water. Even so, lava can flow great distances before cooling causes it to solidify, because lava exposed to air quickly develops a solid crust that insulates the remaining liquid lava, helping to keep it hot and inviscid enough to continue flowing.[1]

The word lava comes from Italian and is probably derived from the Latin word labes, which means a fall or slide.[2][3] An early use of the word in connection with extrusion of magma from below the surface is found in a short account of the 1737 eruption of Vesuvius, written by Francesco Serao, who described "a flow of fiery lava" as an analogy to the flow of water and mud down the flanks of the volcano (a lahar) after heavy rain.[4][5]

Solidified lava on the Earth's crust is predominantly silicate minerals: mostly feldspars, feldspathoids, olivine, pyroxenes, amphiboles, micas and quartz.[6] Rare nonsilicate lavas can be formed by local melting of nonsilicate mineral deposits[7] or by separation of a magma into immiscible silicate and nonsilicate liquid phases.[8]

Silicate lavas are molten mixtures dominated by oxygen and silicon, the most abundant elements of the Earth's crust, with smaller quantities of aluminium, calcium, magnesium, iron, sodium, and potassium and minor amounts of many other elements.[6] Petrologists routinely express the composition of a silicate lava in terms of the weight or molar mass fraction of the oxides of the major elements (other than oxygen) present in the lava.[9]

The physical behavior of silicate magmas is dominated by the silica component. Silicon ions in lava strongly bind to four oxygen ions in a tetrahedral arrangement. If an oxygen ion is bound to two silicon ions in the melt, it is described as a bridging oxygen, and lava with many clumps or chains of silicon ions connected by bridging oxygen ions is described as partially polymerized. Aluminium in combination with alkali metal oxides (sodium and potassium) also tends to polymerize the lava.[10] Other cations, such as ferrous iron, calcium, and magnesium, bond much more weakly to oxygen and reduce the tendency to polymerize.[11] Partial polymerization makes the lava viscous, so lava high in silica is much more viscous than lava low in silica.[10]

Because of the role of silica in determining viscosity and because many other properties of a lava (such as its temperature) are observed to correlate with silica content, silicate lavas are divided into four chemical types based on silica content: felsic, intermediate, mafic, and ultramafic.[12]

Felsic magmas can erupt at temperatures as low as 800 C (1,470 F).[16] Unusually hot (>950 C; >1,740 F) rhyolite lavas, however, may flow for distances of many tens of kilometres, such as in the Snake River Plain of the northwestern United States.[17]

Some silicate lavas have an elevated content of alkali metal oxides (sodium and potassium), particularly in regions of continental rifting, areas overlying deeply subducted plates, or at intraplate hotspots.[27] Their silica content can range from ultramafic (nephelinites, basanites and tephrites) to felsic (trachytes). They are more likely to be generated at greater depths in the mantle than subalkaline magmas.[28] Olivine nephelinite lavas are both ultramafic and highly alkaline, and are thought to have come from much deeper in the mantle of the Earth than other lavas.[29]

Lava viscosity determines the kind of volcanic activity that takes place when the lava is erupted. The greater the viscosity, the greater the tendency for eruptions to be explosive rather than effusive. As a result, most lava flows on Earth, Mars, and Venus are composed of basalt lava.[36] On Earth, 90% of lava flows are mafic or ultramafic, with intermediate lava making up 8% of flows and felsic lava making up just 2% of flows.[37] Viscosity also determines the aspect (thickness relative to lateral extent) of flows, the speed with which flows move, and the surface character of the flows.[13][38]

When highly viscous lavas erupt effusively rather than their more common explosive form, they almost always erupt as high-aspect flows or domes. These flows take the form of block lava rather than ʻaʻā or pāhoehoe. Obsidian flows are common.[39] Intermediate lavas tend to form steep stratovolcanoes, with alternating beds of lava from effusive eruptions and tephra from explosive eruptions.[40] Mafic lavas form relatively thin flows that can move great distances, forming shield volcanoes with gentle slopes.[41]

In addition to melted rock, most lavas contain solid crystals of various minerals, fragments of exotic rocks known as xenoliths, and fragments of previously solidified lava. The crystal content of most lavas gives them thixotropic and shear thinning properties.[42] In other words, most lavas do not behave like Newtonian fluids, in which the rate of flow is proportional to the shear stress. Instead, a typical lava is a Bingham fluid, which shows considerable resistance to flow until a stress threshold, called the yield stress, is crossed.[43] This results in plug flow of partially crystalline lava. A familiar example of plug flow is toothpaste squeezed out of a toothpaste tube. The toothpaste comes out as a semisolid plug, because shear is concentrated in a thin layer in the toothpaste next to the tube and only there does the toothpaste behave as a fluid. Thixotropic behavior also hinders crystals from settling out of the lava.[44] Once the crystal content reaches about 60%, the lava ceases to behave like a fluid and begins to behave like a solid. Such a mixture of crystals with melted rock is sometimes described as crystal mush.[45]

Lava flow speeds vary based primarily on viscosity and slope. In general, lava flows slowly, with typical speeds for Hawaiian basaltic flows of 0.40 km/h (0.25 mph) and maximum speeds of 10 to 48 km/h (6 to 30 mph) on steep slopes.[37] An exceptional speed of 32 to 97 km/h (20 to 60 mph) was recorded following the collapse of a lava lake at Mount Nyiragongo.[37] The scaling relationship for lavas is that the average speed of a flow scales as the square of its thickness divided by its viscosity.[46] This implies that a rhyolite flow would have to be about a thousand times thicker than a basalt flow to flow at a similar speed.

The temperature of most types of molten lava ranges from about 800 C (1,470 F) to 1,200 C (2,190 F).[16] depending on the lava's chemical composition. This temperature range is similar to the hottest temperatures achievable with a forced air charcoal forge.[47] Lava is most fluid when first erupted, becoming much more viscous as its temperature drops.[13]

Lava flows quickly develop an insulating crust of solid rock as a result of radiative loss of heat. Thereafter the lava cools by very slow conduction of heat through the rocky crust. For instance, geologists of the United States Geological Survey regularly drilled into the Kilauea Iki lava lake, formed in an eruption in 1959. After three years, the solid surface crust, whose base was at a temperature of 1,065 C (1,949 F), was still only 14 m (46 ft) thick, even though the lake was about 100 m (330 ft) deep. Residual liquid was still present at depths of around 80 m (260 ft) nineteen years after the eruption.[16]

A cooling lava flow shrinks, and this fractures the flow. Basalt flows show a characteristic pattern of fractures. The uppermost parts of the flow show irregular downward-splaying fractures, while the lower part of the flow shows a very regular pattern of fractures that break the flow into five- or six-sided columns. The irregular upper part of the solidified flow is called the entablature, while the lower part that shows columnar jointing is called the colonnade. (The terms are borrowed from Greek temple architecture.) Likewise, regular vertical patterns on the sides of columns, produced by cooling with periodic fracturing, are described as chisel marks. Despite their names, these are natural features produced by cooling, thermal contraction, and fracturing.[48]

As lava cools, crystallizing inwards from its edges, it expels gases to form vesicles at the lower and upper boundaries. These are described as pipe-stem vesicles or pipe-stem amygdales. Liquids expelled from the cooling crystal mush rise upwards into the still-fluid center of the cooling flow and produce vertical vesicle cylinders. Where these merge towards the top of the flow, they form sheets of vesicular basalt and are sometimes capped with gas cavities that sometimes fill with secondary minerals. The beautiful amethyst geodes found in the flood basalts of South America formed in this manner.[49]

The morphology of lava describes its surface form or texture. More fluid basaltic lava flows tend to form flat sheet-like bodies, whereas viscous rhyolite lava flows form knobbly, blocky masses of rock. Lava erupted underwater has its own distinctive characteristics.

ʻAʻā (also spelled aa, aʻa, ʻaʻa, and a-aa, and pronounced [ʔəˈʔaː] or /ˈɑː(ʔ)ɑː/) is one of three basic types of flow lava. ʻAʻā is basaltic lava characterized by a rough or rubbly surface composed of broken lava blocks called clinker. The word is Hawaiian meaning "stony rough lava", but also to "burn" or "blaze";[52] it was introduced as a technical term in geology by Clarence Dutton.[53][54] 041b061a72


Welcome to the group! You can connect with other members, ge...


bottom of page